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Auction Research Evolving: 
Theorems and Market Designs†

By Paul Milgrom*

 Game-theoretic modeling of auctions began in the 1960s with a pair of semi-
nal papers by William Vickrey (1961, 1962) and the brilliant but unpublished doc-
toral dissertation of Armando  Ortega-Reichert (1968). Robert Wilson (1977, 1979)
became the next important contributor to auction theory research and, as Wilson’s 
student, I was inspired to make auctions and bidding the subject of my doctoral 
dissertation.

My research about auction theory and market design has evolved through three 
quite distinct eras. In the first, which began with my dissertation and continued for 
about five years, I aimed to extend Wilson’s research to a wider set of models, char-
acterizing the equilibrium strategies of auction games, the extent to which bidders’ 
private information becomes reflected in prices in auctions and securities markets, 
and how a seller’s expected revenue depends on the detailed auction rules. While the 
first era was about understanding existing rules, the next era was about designing 
new auctions. That era was launched when the FCC decided to sell radio spectrum 
rights using an auction using almost exactly the simultaneous multiple round (SMR)
that Wilson and I had proposed. The FCC auction was designed in mere months 
and I was inspired to study the properties of our SMR design and to explore alter-
natives. Nearly all the theory in that era was about designing auctions for the sale 
of single items or items that were substitutes. In the third, current era, I designed 
practical auctions to cope with the new problems that arise when some items are not 
substitutes. The design and implementation teams I led used both theoretical and 
computational methods to achieve our aims, drawing on insights from economics, 
game theory, and computer science.

Most of my work published in academic journals is theoretical, proving theo-
rems about the properties of abstract models, but developing and participating in 
 real-world mechanisms requires more than that. Two important lessons that I learned 
from working on  high-stakes auctions are that they operate in an almost infinite vari-
ety of contexts, and that this variety is the reason for the paradoxical importance 
of including unrealistic assumptions in models built to understand and illuminate 
reality. No single set of assumptions is adequate to describe all the various settings 
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in which auctions are used, and too much specificity in models can blind the analyst 
to important general insights.

As one who uses theory both to prove theorems and to create mechanisms for 
the  high-stakes applications, I was initially puzzled by the fact that the most cel-
ebrated theorems of economic theory rely on deeply unrealistic assumptions. 
Arrow’s and Debreu’s first Welfare theorem assumes that a Walrasian equilibrium 
exists and that there are neither externalities from consumption and production nor 
firms able to affect the prices of the goods they sell. The Coase theorem assumes 
zero transaction costs. The  Modigliani-Miller theorems assume that investors and 
firms can offer financial securities and/or transact securities on identical terms, The 
 Vickrey-Myerson revenue equivalence theorem assumes that bidder values are inde-
pendently and identically distributed and that they have no other information. These 
important theorems also assume that agents are all perfectly rational and, when they 
need to form expectations about future prices or other agents’ strategies, their expec-
tations are always correct!

Why do economists rely on such unrealistic assumptions? It is because a 
 well-chosen simplification can remove the dust and smoke that obscures our view 
of the workings of economic forces. Although we celebrate the resulting theorems 
for the insights they deliver, we can apply them successfully only by being vigilant, 
working hard to understand not just the insights that simplified analyses provide but 
also how the designs and rule choices they inspire must be adapted to withstand the 
dust and smoke and also the much larger disturbances of the particular worlds in 
which the mechanisms will operate.

How Information Is Reflected in Prices

When I began my economics research career under the tutelage of my  co-laureate, 
Robert Wilson, game theory had only begun to penetrate economics. Earlier eco-
nomic theory focused on prices that cleared markets but had little to say about how 
such prices could be discovered. Wilson suggested that because auctions were a sig-
nificant mechanism for simultaneously determining an allocation and discovering 
prices, and since their rules were often explicit, studying auctions would be a good 
way to begin understanding how prices and allocations emerge.

Much of the early auction research focused on questions related to the informa-
tion content and the level of prices. How much of the bidders’ information comes to 
be reflected in the prices that are paid? If a lot of information is reflected in prices, 
how does that affect the ability of bidders to profit? Do some auction rules lead to 
systematically higher expected prices than others?

The information problem took on a special urgency following the publication of 
an influential paper by Grossman and Stiglitz (1980). Their paper had used an older, 
 non-game-theoretic approach to model Fama’s (1970) efficient market hypothesis, 
according to which asset prices reflect all information available to the market. In 
one version of their model, prices completely reflect all of the trader’s information, 
including private information. Consequently, informed traders never profit from 
their information and so have no incentive to invest to acquire it. If that were right, 
however, then surely prices could be uninformative, so a trader who acquired private 
information could profit by doing so. For auction theorists, this paradoxical finding 
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just reinforced our belief that general equilibrium theory was the wrong platform to 
use for studying market clearing among investors with private information.

Wilson (1977) took a first stab at an alternative formulation in an auction model 
with “common values,” meaning one in which there is an asset for sale that has the 
same value   V ̃    to all bidders. In the game-theoretic auction model, there is no infor-
mation paradox. Prices reflect bidders’ information because they depend on the bids 
and bidders acquire information to the extent that they can profit from it.

Wilson’s model famously highlighted the winner’s curse, which arises because 
a winning bidder tends to be someone who has overestimated the value of the 
asset. To formalize that conclusion, suppose that each bidder  n = 1, …, N  makes 
an independent, unbiased estimate   X n    of the value   V ̃     (so E [ X n   |  V ̃   ]  =  V ̃  )  and uses 
some increasing bid strategy   b n   ( X n  )  . Bidder  n  wins only if its bid exceeds the highest 
opposing bid   ω n   =  max j≠n     b j   (   X j   )    . Conditional on   V ̃   , the estimates are independent, 

from which it follows that  E [ X n    |  V ̃  ,  X n   >  b  n  −1  ( ω n  )  ]  ≥ E [ X n   |  V ̃   ]  =  V ̃   . According 
to this inequality, if bidder  n  wins, one can infer that its value estimate is larger, 
in expectation, than the asset value. A rational bidder needs to account for that in 
deciding how much to bid.

Despite the fame of the winner’s curse, the main thrust of Wilson’s paper was dif-
ferent. He sought to determine whether the equilibrium auction price might provide 
a good estimate of the common value   V ̃   . For that analysis, suppose that  N  bidders 
participate in the auction and let   b  N  ∗   ( · )   be the Nash equilibrium bidding function 
that maps estimates into bids. The rules specify that the highest bid wins and the 
winner pays the amount of his winning bid. Let   P  N  ∗   =  b  N  ∗   (max ( X 1  , …,  X N  ) )   be the 
winning bid. Wilson’s paper identified a sufficient condition on the distributions 
of bidder estimates given values to imply that,   plim N→∞    P  N  ∗   =  V ̃   : the equilibrium 
price converges in probability to the actual value as the number of bidders grows.

My first published economics paper (Milgrom 1979), which was orig-
inally a term paper for Wilson’s class, extended his analysis to identify a 
necessary and sufficient condition for that convergence in probability. My con-
dition was a purely statistical one, namely, that for all possible values  v  of   V ̃   ,  
  inf S   Pr  {   X n   ∈ S  |    V ̃   < v }   /Pr  {   X n   ∈ S  |    V ̃   = v }    = 0 . Informally, this condition 
says that when the value is actually  v , there is some information a bidder  n  can 
acquire to make him nearly certain that the value is at least  v . I used a statistical 
argument to show that for any functions   b N    and setting   P N   =  max n≤N     b N  ( X n  )  , the 
conclusion   plim N→∞    P N   =  V ̃    can hold only if my condition holds. For the converse, 
I proved properties of the  game-theoretic equilibrium strategies to show that my 
condition implies   plim N→∞    P  N  ∗   =  V ̃   .

My second published paper continued the investigation of the information content 
of prices but shifted the focus from  first-price auctions to  second-price auctions when 
bidders are deciding what information to gather. In a  second-price auction, since the 
price depends only on the highest losing bid, a winning bidder who has a better value 
estimate than the second highest among the others can earn a positive profit from the 
auction. This analysis showed promise by avoiding the  Grossman-Stiglitz paradox, 
but it was limited to  one-sided auction markets in which the bidders are just the buyers.

To analyze securities trading, I needed to study markets in which both buyers and 
sellers were concerned about the winner’s curse. Milgrom and Stokey (1982) took 
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a first step in that direction. It modeled trade among  risk-averse agents with strictly 
concave utility functions   u n   , each with some private information   X n    about the val-
ues of various possible trades and some random endowment   Z n   . The agents engage 
voluntarily in some mechanism that leads to a trade delivering a value increment to 
agent  n  denoted by    V ̃   n   . Feasibility of the trade implies that   ∑ n  

      V ̃   n   = 0 .
Let  T  denote the set of information profiles according to which all agents 

agree to trade using the mechanism. To avoid the winner’s curse, rational 
agents account for others’ willingness to trade, so  n  should participate only if  
 E [ u n   (  V ̃   n   +  Z n  )  −  u n   ( Z n  )  |  X n  , X ∈ T]  ≥ 0 . All agents agree to use the mechanism 

only when  T ⊆  {X |  (∀ n)  E [  u n   (  V ̃   n   +  Z n  )  −  u n   (   Z n   )    |  X n  , X ∈ T]  ≥ 0}  . Can differ-
ences in information alone lead to trade? To answer that question, we assumed it was 
common knowledge that the initial allocation  Z  is Pareto optimal, that is, that with 
no information, no trade could increase every agent’s expected utility. According 
to our “No Trade Theorem,” these assumptions imply that for all  n ,    V ̃   n    1 T   = 0 , 
where   1 T    is the indicator of the event that trade occurs: “Risk averse traders never 
make ( nonzero) trades based solely on differences in information.”

Our analysis implied that for trade to take place among rational traders, there 
must be at least the possibility that, were there no differences of information among 
traders, some  Pareto-improving trade might exist. That is, there must be a transac-
tional motive for trading, not just a speculative motive. As typical examples of a 
transactional motive, an agent may want to buy securities because she has just added 
savings to her retirement account, or to sell securities in order to pay this year’s 
college tuition.

Once some traders can have transactional reasons to trade, speculators and others 
with information about   V ̃    may find themselves with profitable speculative opportu-
nities. Glosten and Milgrom (1985) studied that by assuming that any trader arriving 
at the market may have a transaction motive or a speculative motive or a mix of both. 
We studied how a trader’s information comes to be reflected in prices and whether 
the price a trader pays already reflects some of his own information.

In our model, a group of “specialists” compete against one another to serve cus-
tomers who come to market one by one to trade in some security. For the spe-
cialists, each unit of the security can be sold tomorrow for some value   V ̃   . The 
specialists set bid and ask prices today: a bid is an offer to buy from a customer 
who seeks to sell; an ask is an offer to sell to a customer who seeks to buy. The 
customer sees all the bid and ask prices and takes the best deal. Price competi-
tion among the specialists drives their profits to zero on every buy and sell transac-
tion. When a Trader arrives at time  t , the specialists’  zero-profit conditions are that  
  Bi d t   =  E t   [   V ̃    |   Trader buys at Bi d t   ]     and   As k t   =  E t   [   V ̃    |   Trader sells at  Ask t   ]    , where  
  E t    is the expectation conditional on the public information available just before the 
Trader acts at time  t . If the Trader sells or buys at time  t , the actual transaction 
price   P t    is equal to either  Bi d t    or  As k t   , respectively. Let    t    denote the specialists’ 
information just after the Trader makes its choice at time  t . If any transaction occurs, 
then    P t   = E [   V ̃    |     t   ]    . This formula implies that the stochastic process    (   P t  ,   t  ; t ≥ 0 )     
is a martingale: prices have no predictable tendency to drift upward or downward.

Most importantly, this model resolves the  Grossman-Stiglitz paradox while 
still incorporating a version of Fama’s efficient markets hypothesis. In the model, 
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 transaction prices at any time  t  are equal to   E [   V ̃    |     t   ]    , the expected value of the 
security conditional on the available information    t   . This is the  so-called “weak 
form” efficient markets hypothesis. What’s more, the price   P t    at which the Trader 
transacts does incorporate some of its own  pre-trade information, namely, whether 
it had decided to buy or to sell. However, unlike the  Grossman-Stiglitz model, the 
price does not generally incorporate all of the trader’s information: a trader with 
sufficiently accurate information about   V ̃    may be able to profit.

The  Glosten-Milgrom paper became one of my most highly cited ones. Along 
with the paper by Kyle (1985), it helped to launch the literature on financial market 
microstructure, which examines the detailed rules of trading and how those affect 
not only the informational properties of prices but also market efficiency, the size of 
the spread between bid and ask prices, and other market features.

How Auction Rules Affect the Bidders’ Payoffs and the Seller’s Revenue

Another set of questions that had attracted economists’ attention in my first era 
of auction research concerned whether and how bidders’ payoffs and the seller’s 
expected revenue depended on the auction rules. When I began my work, there were 
two main  game-theoretic models for studying auctions: the Vickrey model and the 
Wilson model. My frequent collaborator Robert Weber and I introduced a new model 
that subsumed the Vickrey and Wilson formulations, developed new methods to study 
payoff questions, and provided answers to the payoff and revenue questions.

In Vickrey’s “private values” model, there are  N ≥ 2  bidders with values   v n    that 
are independently and identically distributed according to some continuous distribu-
tion  F  on an interval    [  0,  v –  ]    . Bidder  n  knows   v n    but does not know the others’ values. 
A bidding strategy   b( · )   is a mapping taking the bidder’s value   v n    into a  non-negative 
bid  b ( v n  )  . The price  p  that the winning bidder pays depends on the auction rules and 
may depend on all of the bids. If bidder  n  wins the auction, his payoff will be   v n   − p ; 
if he loses, he pays zero and has a zero payoff.

Wilson’s model, motivated by the case of oil companies bidding for drilling 
rights on tracts leased by the federal or state governments, also assumed that there 
are  N ≥ 2  bidders. Since the value to any bidder was determined mainly by the 
amount of oil that could be extracted as well as its depth and the cost of extraction, 
Wilson assumed that the value   V ̃    was about the same to all bidders, but that different 
companies’ geologists and engineers made different estimates   X n    of that value. If a 
bidder acquires the item for a price  p , it earns a payoff of   V ̃   − p , while other bidders 
receive zero payoffs. Wilson assumed that, conditional on   V ̃   , the different bidders’ 
estimates were statistically independent. As we have seen above, if bids are increas-
ing functions of one’s own value estimate, this necessarily implies a winner’s curse.

The  game-theoretic analyses in Vickrey (1961) and Vickrey (1962) gave birth to 
modern auction theory. In those papers, Vickrey analyzed Dutch descending auc-
tions, English ascending auctions, and sealed tenders, which economists came to 
call “ first-price” auctions. Each was modeled as a game with its own set of rules.

In a Dutch descending auction, the price starts high and declines almost contin-
uously until some bidder shouts “Mine” and wins the item at that price. As Vickrey 
observed, a (“reduced”) strategy in that auction is described by a single number or 
“bid”: the price at which the bidder plans to shout “Mine.” The bidder making the 
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highest bid is the first to shout “Mine” and becomes the winner at that price. As 
Vickrey observed, the same mapping from bids to outcomes describes the  first-price 
auction, so the two auctions are strategically equivalent. Thus, using Nash equilib-
rium for predictions, they lead to the same predicted outcomes.

In an English ascending auction, prices start low and rise as long as two or more 
bidders are active. As modeled by Vickrey, no bidder knows how many others are 
active, so a strategy is again characterized by a single price at which the bidder will 
become inactive. Let’s call that single price a “bid.” The participant with the high-
est bid wins, but the price is equal to the  second-highest bid. The same mapping 
describes the rules of what is now called the “ second-price” auction, so again the 
games are strategically equivalent. In those games, it is a dominant strategy for a 
bidder whose value is   v n    to set his bid equal to   v n   .

Vickrey worked out the equilibrium strategies and computed the expected prices 
and found a surprise: even though the first- and  second-price auctions involve differ-
ent rules, prices, and strategies, the expected equilibrium price is the same for both! 
More precisely, let   b ( · )    be the symmetric equilibrium strategy of the  first-price 
auction and let   v    (   j  )     denote the jth highest among the values   v 1  , …,  v N   . Vickrey’s 

computations established that  E [b ( v    (1)  ) ]  = E [ v    (2)  ]  . This finding remained a puz-
zle for two decades until Myerson (1981) provided a further generalization: any 
two auction mechanisms that always lead to the same equilibrium assignment of the 
good, while requiring no payment by losers, necessarily lead to the same expected 
equilibrium price: the Revenue Equivalence Theorem.

In Milgrom (2004), I developed a new approach to extend the logic of the Revenue 
Equivalence Theorem and to imply new results. My approach relied on the envelope 
theorem of Milgrom and Segal (2002). As applied to Vickrey’s private value model, 
it works like this.

When a bidder places a bid (or more generally makes some moves or plays 
some strategy)  σ  in any mechanism, his choice leads to some probability of win-
ning   α n   (σ)   and incurs some expected payment   β n   (σ)  . Letting   σ n   ( v n  )   denote an opti-
mal bid for the bidder as a function of his value   v n   . The bidder’s maximum expected 
profit,    π n   (   v n   )    , is defined by

   π n   ( v n  )  ≝  max  σ    v n    α n   (σ)  −  β n   (σ)  =  v n    α n   ( σ n   ( v n  ) )  −  β n   ( σ n   ( v n  ) ) . 

According to the “integral form” envelope theorem,   π n   ( v n  )  =  π n   (0)  + 
 ∫ 0  

 v n     α n   ( σ n   (s) )  ds . If, as in many auctions, a bidder with value zero never wins or makes 
any payment, then   π n   (0)  = 0 , so   π n   ( v n  )  =  ∫ 0  

 v n     α n   ( σ n   (s) )  ds . In this case, the expected 
profit of a bidder with any value or “type”   v n    depends only on the probabilities of 
winning   α n   ( σ n   (s) )   for the lower types, that is, for  s <  v n   . This formula implies my 
Payoff Equivalence Theorem: if the bidders’ types are statistically independent and 
if in the equilibrium of two mechanisms,  γ  and   γ ˆ   , the bidder with the highest type 
always wins, then   α  n  γ  ( σ  n  γ  ( v n  ) )  =  α  n   γ ˆ    ( σ  n   γ ˆ    ( v n  ) )  =  F   N−1  ( v n  )  , so for both mechanisms,  
  π n   ( v n  )  =  ∫ 0  

 v n     F   N−1  (  s )   ds . One implication of this formula is that every type of every 
bidder has the same expected payoff in both mechanisms. Since the expected value 
of the allocation is also the same for both mechanisms, the expected revenues are 
equal, too.
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Milgrom and Weber (1982) used a closely related approach to analyze an auc-
tion model that subsumed the Vickrey and Wilson models. This model extended the 
Vickrey model in two ways: by allowing each bidder’s value to depend on other 
bidders’ information and by replacing the assumption of statistically independent 
types with a weaker assumption, described below. The envelope theorem approach, 
implicit in the  Milgrom-Weber analysis, allowed us to prove revenue equivalence in 
a larger set of models and, for our most general model, to prove weak inequalities 
relating payoffs and revenues in different auction designs.

Because a bidder’s information in our model could be different from his value, we 
need additional notation to describe it. In this section, bidder  n ’s information will be 
called its type and denoted by   t n   ∈ ℝ . The bidders expected value of the item con-
ditional on the full profile of types is denoted by    V n   = V ( t n  ,  t −n  )    . We assumed that  
 V ( · )  , which is a function of  N  arguments, is increasing in its first argument and sym-
metric and  non-decreasing in its remaining  N − 1  arguments. Vickrey’s formulation 
is the special case in which   V n   =  t n   ; Wilson’s is the special case with   t n   =  X n    and   
V (t)  = E [   V ̃    |   t ]    .

For our initial analysis, suppose that the types are independent and identically dis-
tributed. Then, the value function defined by   v ( t n  )  ≝ E [V ( t n  ,  t −n  )  |   t j   ≤  t n   for all j ]     
is increasing in   t n   . In auction game  γ , the bidder’s maximum expected profit is

   π γn   ( t n  )  =  max  σ    ∫ 
 
  
 
    (V ( t n  ,  t −n  )   α γn   (σ,  t −n  )  −  β γn   (σ,  t −n  ) )  dF (   t −n    |    t n   )   . 

Suppose that, for auction game  γ , there is a Nash equilibrium in which every bid-
der uses the same strategy   σ γ   , which is an increasing function of the bidder’s type. 
Invoking symmetry, we drop the subscript  n  from the functions   α γn   ,   β γn   , and   π γn   . 
Define   G   γ  (σ,  t n  )  ≝ ∫   β γ   (σ,  t −n  )  dF ( t −n    |    t n  )   . The function   G   γ   expresses the bidder’s 
expected payment as a function of its bid and its type. When the types are sta-
tistically independent,   F ( t −n    |    t n  )    does not depend on   t n   , so the partial derivative is  
  G  2  

γ  (σ, τ)  ≝ ∂  G   γ /∂ τ = 0 .
If equilibrium involves each bidder playing the increasing strategy   σ γ   , then the 

winner is the bidder with the highest type, which leads to this helpful identity:

   ∫ 
 
  
 
    α γ   ( σ γ   ( t n  ) ,  t −n  )  dF (   t −n    |    t n   )    = Pr { t n   >  max  

j≠n
     t j    |    t n  } . 

Applying the envelope theorem to study  n ’s maximum expected profit function, we 
have

   π  γ  ′   (τ)  =   ∂ _ ∂ τ   (E [V (τ,  t −n  )   |    t n   = τ ] Pr  {   t n   >  max  
j≠n

    t j    |    t n   = τ }   )  −  G  2  
γ  ( σ γ   (τ) , τ) . 

As previously observed, if the types are statistically independent, then   G  2  
γ  = 0 , and 

then no  γ  appears on the  right-hand-side, that is,   π  γ  ′    is the same for all such games. 
If we also have that   π γ   (0)  = 0 , then all games in this class have the same profit 
function  π . This subsumes and generalizes the Payoff Equivalence Theorem.

The second way in which Milgrom and Weber generalized the theory was by 
allowing the bidders’ types to be correlated in a particular way. Let   f  (t)    denote 
the joint density of the types. This model introduced the assumption that types are 
“affiliated,” which means that   ∂   2  ln f  (t) /∂  t n   ∂  t m   ≥ 0  for all  t  and all  n ≠ m . As a 
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leading example, this condition is satisfied when there is a  real-valued parameter  θ  
with any prior density  g  such that, conditional of  θ , each type   t n    is independently dis-
tributed with conditional density    f n   ( t n    |   θ)    that satisfies the monotone likelihood ratio 
property. To prove that this example works, one may use the fact that the monotone 
likelihood ratio property can be expressed as   ∂   2  ln  f n   ( t n    |   θ)  /∂  t n   ∂ θ ≥ 0 .

The Payoff Equivalence conclusion does not generally apply without statistically 
independent types, but it can be replaced in symmetric models by the  Milgrom-Weber 
Linkage Principle, which compares the expected profits and payments for all bidder 
types in a symmetric Nash equilibrium in certain pairs of auction games. The intui-
tive idea of the principle is that any bidder’s expected payoff, or “information rents,” 
are lower if   G  2  

γ   is higher, that is, if conditional on its expected payment, payments 
increase faster as a function of the bidder’s actual type. For example, let us compare 
a  first-price auction  γ , in which   G  2  

γ  = 0  (because the winning bidder pays its bid), 
to a  second-price auction   γ ˆ   , in which the winning bidder pays the second highest 
bid, the expectation of which can depend on the winning bidder’s type. If types are 
affiliated, then given whatever bid the winner may make,   G  2  

 γ ˆ    ≥ 0 : the conditional 
expectation of the second highest bid is an increasing function of the winner’s type. 
This statistical linkage leads the winner’s expected price to rise faster as a function 
in   γ ˆ   , and one can use this and the envelope formula to conclude that   π γ   ≥  π  γ ˆ     :  
bidder profits are lower and seller revenues are higher in the  second-price  
auction.

The Linkage Principle allows us to derive inequalities by focusing on the partial 
derivative   G  2  

γ   in the envelope formula. Recall that this derivative is always zero 
when types are statistically independent, so inequalities among auctions arise from 
the statistical linkages between a bidder’s type and the price that bidder pays. In 
the  Milgrom-Weber “ clock-auction” model of the English auction, the bidders all 
watch as posted prices rise continuously on a clock. Bidders are assumed to observe 
the price levels at which each bidder stops bidding and, in equilibrium, they bid up 
to higher prices when others are seen to bid more, so final prices are an increasing 
function of all the losing bidders’ types. Given affiliation, all of those types tend 
to be higher when the winning bidder’s type is higher, so   G  2  

γ   is larger higher for 
the English auction than for the  second-price auction. In another example, suppose 
that the seller has information   t 0    about the value and that the entire random vec-
tor  t =  ( t 0    t 1   ⋯  t N  )   is affiliated. If the seller announces   t 0   , then the price depends 
on that announcement, which is positively related to each   t n   . The technical work 
in this paper involves establishing that these positive linkages are of the right sort 
to increase   G  2  

γ   as needed. Applying the Linkage Principle to the unique increasing 
symmetric Nash equilibrium in various games, we found the following results:

• The expected Nash equilibrium price is higher in a  second-price auction than in 
a  first-price auction.

• The expected Nash equilibrium price is higher in an English ascending auction 
than in a  second-price auction.

• The expected Nash equilibrium price is higher in each of the  first-price, 
 second-price, and English auction when the seller adopts a policy of revealing 
its information   t 0    to all the bidders than when its policy is to withhold that 
information.
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Allocating Radio Spectrum Licenses and the SMR Auction Design

The second era of my auction research launched in 1993, when the US gov-
ernment decided to change the way that it allocated radio spectrum rights. Until 
the  mid-1980s, the rate of arrival of new applications to use radio frequencies was 
modest. When a dispute arose about the competing uses of some band of radio 
frequencies, the Federal Communications Commission (FCC) conducted compar-
ative hearings to determine which use best served the public interest and awarded 
spectrum rights accordingly. It was an awkward and  time-consuming process, which 
some favored because it enabled the regulator to press applicants to serve various 
interests and enhanced the power to the regulators and politicians. This system of 
comparative hearings was overwhelmed by the emergence of mobile phone tech-
nology in the early 1980s, which led to hundreds of applications to provide ser-
vices to some small areas. Congress authorized the FCC to abandon comparative 
hearings and replace them with a lottery system, but that system was problematic, 
too. Applicants needed no particular qualifications to participate in these lotteries 
and sometimes won valuable rights to supply cellular services. In the best case, 
they would quickly sell those rights to a real telephone company that could provide 
an actual phone service. In the worst case, they would hold those rights for years, 
depriving consumers of any service.

In 1993, Congress acted again, calling upon the FCC to eliminate the lotteries 
and instead conduct auctions to sell the license rights. According to the law, the 
primary goal of the auctions would be to promote an efficient and intensive use of 
radio spectrum. Among the secondary goals was to capture a portion of the value 
for the US Treasury.

The FCC believed that the best way to promote efficient and intensive service was 
to promote competition among telephone companies, including local carriers like 
Cincinnati Bell, regional companies like Bell Atlantic, companies like AT&T, MCI, 
and Sprint which then provided  long-distance phone service, and new businesses. 
These would be complicated sales of a set of valuable assets. Having no experi-
ence running even small, simple auctions, the FCC handed the task of planning the 
auction program to a team of its economists led by Evan Kwerel. The team sought 
guidance in the academic auction literature and cited some of my papers in a pub-
lished Notice of Proposed Rulemaking. Despite their citations, there was little in 
the existing  game-theoretic auction literature that could usefully guide the detailed 
choices needed for this auction.

Long before the application of game theory to study auctions, Ronald Coase (1959) 
had advocated using auctions to assign spectrum rights. In what was to be his first 
advocacy of the  now-famous Coase theorem, he argued that so long as rights are trad-
able, private exchange will lead them to migrate into the right hands. Moreover, he 
argued, allocating rights according to willingness to pay in an auction was likely to 
lead to a good initial allocation, reducing the amount of trade that would be needed.

Coase and his followers have the idea that, somehow, markets find a way to 
migrate resources to their highest value use. Writing before the emergence of infor-
mation economics and modern market design, he did not worry about inefficient bar-
gaining or about how parties could identify the most efficient arrangements. Today, 
most economists would agree that assigning property rights to permit exchange can 
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be an important step to facilitating efficient exchange, but often more is needed. To 
assess the effectiveness of an unorganized market and the need for careful market 
design, we ask additional questions. Is the resource allocation problem a simple one 
in which a nearly efficient outcome can be reached by a series of profitable bilateral 
exchanges? Or are complex, multilateral arrangements needed? If market design is 
needed, what market rules can facilitate and promote the necessary trades?

From the perspective of 1993, the biggest market design challenge was one of 
“price discovery.” Before the auction, bidders could not know on what terms dif-
ferent licenses might be sold. According to the price discovery perspective, the job 
of the auction was to make that clear. Many of the  so-called experts contributing to 
the debate took other perspectives. One leading proposal was to employ rules like 
those used by Sotheby’s or other traditional auction houses, according to which 
the spectrum licenses are auction lots to be sold  one-at-a-time in a  predetermined 
sequence. In practice, however, such a sequential design would create intractable 
problems for the bidders. For example, how much should a company hoping to set 
up a nationwide business bid for the first licenses offered in, say, Chicago and Los 
Angeles, when there is still be no information about the cost of acquiring licenses to 
serve New York and Boston? What will happen to the bidder if it succeeds in buying 
licenses in some but not all of the cities needed for its business plan? If bidders guess 
wrong about future prices, bidding mistakes could lead to an inefficient use of the 
frequencies.

Another proposal would have addressed that problem by allowing nationwide 
service companies to make combinatorial bids, which offer a single price for a 
desired package of licenses, such as one covering the whole country. But how would 
such bids be compared with individual bids for smaller licenses? If the total initial 
bids of the small bidders was too low to win against the national bidder, would 
there be a procedure to allow them to raise all their bids to win? How could the 
small bidders be encouraged to coordinate so that their total bid was high enough 
to be winning?

Questions like those led both the FCC and several telephone companies to seek 
the advice of academic economists who had studied auctions. Robert Wilson and 
I were approached by Pacific Bell, a regional telephone company, while the FCC 
hired Professor John McMillan. As I pondered the challenges of the spectrum allo-
cation problem, I was inspired by my experience bidding in “silent” auctions at 
charity events. In a typical such event, people donate things to be sold in an auc-
tion. For example, one person might donate cooking lessons; a second person might 
donate an evening with a celebrity; a third, a weekend at a privately owned ski cha-
let; another, a bottle of wine, and so on. The items or descriptions of them are put 
on tables in a large room and everything is for sale at once in ascending auctions. 
There is a pad of paper and a pencil in front of each item. Bidders would write 
their name or ID number and a price on the paper, subject to the restriction that 
the bid must exceed the price on the preceding line by some minimum increment. 
There is a deadline for bidding, commonly set just before food is served or another 
 fund-raising activity begins. The simultaneous ascending design allows a bidder 
who is unsure which item to bid on to begin with her most preferred items and then 
switch to others if the preferred items become too expensive. This process eases the 
bidder’s task of deciding which item to bid for and how much to bid.
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In contrast, consider a problem reported in earlier simultaneous  sealed-bid designs 
for mineral rights in the United States and for radio spectrum in Australia. In those 
auctions, many items draw only very low bids, as bidders, seeking to keep the total 
prices they pay within some allotted budget, bid high on just a few items and low or 
zero on the others. Often, the bidders guess wrong about which ones they can win. 
That is much less problematic in silent charity auctions as participants watch the bid 
sheets, learn about prices, and identify the best potential deals before the auction is 
over. Another advantage of simultaneous ascending auctions is that as bidders sort 
themselves out, a single bidder could become the highest losing bidder for many 
items, raising the prices of each of those.

In my experience, this design had worked pretty well for the charities, as many 
bidders regarded their prices as a contribution to a good cause. However, I could 
also see that the silent auction rules were being gamed by clever bidders, and in 
a way that might become much worse in a  high-stakes spectrum auction with bil-
lions of dollars at stake. Bidders in the silent charity auction engaged in a form of 
“sniping,” which means waiting until the last moment to bid. A bidder who wanted 
to buy some item could sometimes keep the price low by refraining from bidding 
until the last few seconds before the bidding deadline. By bidding only at the end, 
it might deny other bidders who would be willing to compete any opportunity to 
react.

To retain the advantages of the silent auction design while eliminating the sniping 
problem, Robert Wilson and I proposed our simultaneous multiple round (SMR) 
design. It differed in three ways from the silent auction:

 (i) Instead of being run in continuous time with all bidders present on site, we 
structured the auction to be run remotely in a series of discrete rounds. In 
each round, there would be a minimum price for each item, which was set by 
adding a minimum increment to the best previous bid. No information would 
be shared during a round. After a round closes, information about bids would 
be reported to the bidders and time would be allowed for bidders to digest the 
information and plan new bids. Then, the next round would begin.

 (ii) To prevent sniping on individual licenses, we added a termination rule, 
which says that the auction does not end until there is a round with no new 
bids for any license. In this way, when some bidder raises another’s price for 
a license, the second bidder always has a chance to raise back or to switch 
and bid on another license. There are other important details of a design like 
this one, such as what information to report to bidders after each round and 
also the choice of licenses to be offered for sale.

 (iii) To ensure adequate progress of the auctions, I invented what has become a 
standard rule category in auctions: the activity rule. The activity rule says a 
bidder cannot bid for a larger amount of spectrum rights in any round than 
it had bid in the previous round. This rule prevents a bidder from waiting to 
see what others were doing before making its own commitments, helps the 
auction to develop meaningful prices before bidders must make their final 
bids, and shortens what could otherwise be an untenably lengthy process.
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Preston McAfee had offered a similar simultaneous ascending design. The main 
difference was that instead of our termination and activity rules, McAfee’s design 
specified that bidding on individual licenses would close after some number of 
rounds with no new bids on that license. This rule was designed to deal with the 
same problems, but it could force bidders to decide prematurely whether to continue 
bidding for the most preferred license or to switch away to a less desirable one, 
which would soon become unavailable under the termination rule.

To convince the FCC that our proposed SMR auction design was easy for the 
bidders to use, completely specified, and implementable in practice, I arranged to 
have it coded using Excel spreadsheets. Each bidder had a spreadsheet on which to 
enter its bids, with code to check that the bids satisfied the activity rules and any 
other eligibility rules. The auctioneer had a spreadsheet, too, which in each round 
imported bids from the bidder spreadsheets, rechecked that the bids satisfied all the 
rules, processed the bids, and exported the round results back to individual bidders’ 
spreadsheets. Although the real implementation would require internet communica-
tion features and much greater security, the Excel sheets were a sufficient proof of 
concept to convince the staff to recommend the SMR design to FCC chairman Reed 
Hundt, who approved it and ordered it to be implemented.

The initial design ran smoothly without any major glitches and the FCC trum-
peted its success. The design was welcomed by bidders, celebrated in the popular 
press, and copied by several other countries. One New York Times article even 
declared it to be “the greatest auction in history.” Since the initial auction, more 
than $100 billion of spectrum sales in the United States and more than $300 bil-
lion around the world have used some version of these rules. All this, despite the 
initial absence of any deep theoretical treatment of why such an auction should 
work.

That importance of missing theory was driven home to me shortly after FCC 
auction #4, when Australian regulators who were free market enthusiasts came to 
Washington. They proposed the idea of “postage stamp” licenses, meaning thin 
slices of spectrum covering tiny geographic areas, which phone companies could 
assemble any way they liked, allowing maximum flexibility for their business plans.

The Australian proposal idea highlighted one of the gravest dangers of the SMR 
auction design. A small bidder in this auction who takes minimum bid prices as 
given in each round might find itself becoming the highest bidder on a set of licenses 
before learning that the prices of other licenses will rise so high that its business plan 
for those is unprofitable. The bidder must then decide whether to buy those licenses 
anyway, losing money, or to acquire the smaller set of licenses it is currently win-
ning, which may be just a subset of what a profitable business plan requires. This 
risk of encountering this conundrum has come to be called the exposure problem. 
Evidently, this risk is absent only when increasing the price of some licenses cannot 
lead a bidder to prefer to demand fewer other licenses. A demand function with that 
property is said to exhibit “gross substitutes.”

Kelso and Crawford (1982) deserve much of the credit for the next analysis. They 
had studied the role of the gross substitutes condition in a model of labor markets 
that is quite a close cousin of my auction model, and the conclusions of the models 
are close cousins, too. In Milgrom (2000), I found that if bidders in the simultane-
ous multiple round auction bid straightforwardly as price takers, as small bidders 



1395MILGROM: AUCTION RESEARCH EVOLVING: THEOREMS AND MARKET DESIGNSVOL. 111 NO. 5

are encouraged to do by the activity and termination rules, and if the licenses are 
substitutes for all bidders, then the final auction allocation is approximately efficient 
and its prices approximately clear the markets for all licenses. Here “approximately” 
means that the efficiency and  market-clearing conclusions hold exactly for a differ-
ent economy in which bidder values for some licenses are only slightly lower, with 
no value difference exceeding one bid increment.

Market Design for Substitutes: Auctions and Matching

Modern market design was born in 1994 with the introduction of the SMR auc-
tion design for radio spectrum and the redesign of the National Resident Matching 
Program for doctors based on the matching theory of Gale and Shapley (1962). 
The substitutes condition plays a central role in matching theory, too. During the 
 Gale-Shapley algorithm, when a hospital rejects the offer of some doctor and later 
receives an offer from other doctors, the substitutes condition means that if the first 
doctor’s offer were still available, the hospital would still reject it. At the end of the 
algorithm, any doctor who prefers to work for some hospital has proposed to it and 
been rejected and would still be rejected if she renewed her proposal. That is why 
the final outcome is a stable matching.

The  Gale-Shapley matching algorithm seemed  auction-like to me, at least 
from the standpoint of the hospitals. The algorithm is one in which the hospitals 
reject inferior offers and hold on to the currently best ones but remain open to 
rejecting those in favor of still better offers that may come later. That raises the 
question: how important was this similarity and how broadly could it be used for 
applications?

I collaborated with a graduate student to answer that in Hatfield and Milgrom (2005). 
In our model, a contract was a bilateral agreement between two parties that had three 
blanks to fill in: the name of the offering party or “buyer,” the name of the counterparty 
or “seller,” and any extra terms. Mathematically, it was a triple   (b, s, t)  ∈ B × S × T , 
where the three sets  B, S, T  are all finite. When  T  is a singleton, that is a standard match-
ing model. To represent offers that are prices, one can set  T ⊂  ℝ +    and prescribe that 
the buyer always prefers lower prices and the seller higher prices. The terms could also 
have many other interpretations. For example, in the marriage problem, a proposal that 
says, “we’ll move to Arkansas and take over dad’s store when he retires next year” 
might elicit a different response than “we’ll move to the beach in LA and go surfing 
every weekend.” We showed that many of the results of matching theory continue to 
apply as long as offers are substitutes, and our framework also enabled new applica-
tions in which the substitutes condition does not apply.

The first step in the usual matching mechanism is for each side to describe its 
preferences. In a simple matching with contracts model, parties on one side, let’s call 
them the “doctors,” seek out just one contract with one hospital, but those on the 
other side, let’s call them the “hospitals,” are seeking to hire a collection of doctors. 
For the doctors, if all  hospital-term pairs are acceptable, that means reporting a list 
of   | H × T |    hospital-term pairs. For a hospital that is seeking to report its preferences 
over subsets of contracts with many doctors, there are    (1 +  | T | )     |D|    combinations to 
consider, because each doctor can either be excluded from the hired set or have any 
of   | T |   contracts. Even if we limit attention to sets with exactly  k  doctors, there are 
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still    | T |     (  |D|   
k
  ) 

   contract combinations to be ranked, which is often far too many for a 
simple list.

In Hatfield and Milgrom (2005), we begin the task of finding simple languages to 
express preferences for packages of items, especially when the terms are monetary 
and/or the doctors are substitutes for the hospitals. The first simplification comes 
from assuming  quasi-linearity of preferences, so that preferences are described sim-
ply by specifying a value for each package. Even so, in a spectrum auction with   
| D |  = 1,000  items for sale, the number of subsets is   2   1,000  , and no list of such a 
length can be reported in practice. We suggest further restricting the set of values 
by imagining that each worker is to be assigned to a specific role and has a value in 
that role, with at most one worker in each role. Then, for a set of  k  workers assigned 
to  r  roles, it takes just  kr  numbers to describe the values of any set of workers. The 
same logic can be applied when we allow the number of workers to vary and when 
we suppose that the hospital already has some doctors under contract. We require 
just  r  values per worker to describe the endowed assignment valuations. All such 
valuations make the doctors into substitutes, so the usual theorems apply.

In Milgrom (2009), I introduced a closely related language to report substitutes 
preferences in auction problems. There were two main differences in this language. 
First, many auction problems feature large homogeneous categories of goods. For 
electricity, power from several sources might contribute to serve some  location-time 
pair and there might be transmission constraints that limit acquiring certain amounts 
of power. Second, for simplicity, I eliminated the concept of roles and instead 
focused on bids to serve some purpose. Constraints reflected simplified transmis-
sion constraints, limiting the amount of power to be purchased from various power 
sources. I showed that so long as these constraints had a hierarchical (“laminar”) 
form, the resulting demand satisfies the gross substitutes condition. I also showed 
that if the constraints were integer variables, then the optimal assignment would be 
integer as well, so the same setup could be used, for example, to allocate shipping 
containers, in which quantities are divisible but it is rarely economical to ship any 
quantities that do not correspond to a whole number of containers.

The Exposure Problem and Combinatorial Auctions

How big a problem is it in practice that bidders do not regard all items as substi-
tutes? Are there strategies a bidder can use in an SMR to avoid the exposure prob-
lem? Good auction design takes close account of the perspectives and capabilities 
of the bidders.

In Bulow, Levin, and Milgrom (2017), we recount the strategies that we used to 
advise a bidder, Comcast, in the auction for Advanced Wireless Services (AWS) con-
ducted in 2006. That sale used an SMR auction design. The bidder instructed its auc-
tion team as follows: buy at least 20MHz of bandwidth coverage in every major US 
city, about 2/9 of all the spectrum for sale, but only if the total cost was less than the 
maximum budget that the bidder had allotted. Otherwise, buy no coverage at all.

According to received theory, those instructions create a classic exposure prob-
lem, in which our client might make winning bids on some licenses without being 
able to afford for the whole set that its business plan required.



1397MILGROM: AUCTION RESEARCH EVOLVING: THEOREMS AND MARKET DESIGNSVOL. 111 NO. 5

In practice, we concluded that the key to eliminating most of the exposure risk 
was to be able to forecast final total prices from the early bids. While prices were 
low, our client would bid for what it wanted. Later, if the forecasted total price was 
too high, the bidder would exit and plan to resell any licenses that it had acquired 
when prices were low. Our forecast, which proved to be accurate, indicated that the 
desired package of licenses would be affordable. The bidder relied on that assess-
ment and successfully acquired its target package. But how was the forecast made?

In most FCC spectrum auctions, with billions of dollars at stake, budget con-
straints often limit the total amounts that the major bidders can buy. When those 
constraints are all binding, the total price paid for all licenses is approximately equal 
to the sum of the bidders’ budgets. To estimate that sum from the early bidding 
behavior, we first compute for each round the money amounts that bidders risk 
spending if their bids become winning, which is the sum of the standing high bids 
from the previous round plus the new bids on other licenses at the current round. 
This budget exposure statistic rises steadily in the early rounds of an auction, as 
prices rise. At some point, however, budget exposure often seems to hit a ceiling as 
all bidders become  budget-constrained and stop bidding for lower priority licenses. 
This ceiling was our estimate of the total budget amount committed to the auction 
by all bidders.

This bid advisory experience reminds us as designers how important it is to con-
sider the perspective of the bidder and, in particular, cautions us not to exaggerate 
 worst-case exposure problems in developing and assessing auction designs.

While the exposure problem is sometimes manageable for bidders, there can be 
other times when the exposure problem is especially problematic. In such cases, 
taming the problem requires adopting a combinatorial auction design, which refers 
to any auction design in which bids are offers to buy entire packages of items, rather 
than a collection of individual offers for the items in the package. Combinatorial 
designs face three new kinds of special challenges:

 (i) Bidders typically cannot bid on all the packages. For example, with just 
100 items for sale, there are   2   100   packages available, which is far too many to 
be included in a bid list. What are some useful compact ways to express bids 
on many packages without simply listing packages and values? Lacking such 
a compact expression, how can we design an auction to exchange informa-
tion among bidders to guide them to bid on the correct packages?

 (ii) If bidders do bid on a large number of packages, then the problem of finding 
the set of bids that maximize the total price is  NP-hard. How should the auc-
tion system select winners if it is unable to optimize? What limits can be put 
on the package bids to ensure that the system can solve the problem?

 (iii) How should prices be set? Economic theorists and computer scientists are 
often quick to point to the Vickrey auction rule, but it requires optimiza-
tion, which can make its prices intractable to compute. Also, as Ausubel and 
Milgrom (2006) showed, Vickrey prices can be uncompetitively low and 
encourage collusive strategies, among a longer list of problems. Are there 
alternative pricing rules that mitigate these problems?
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For the first challenge, Ausubel, Cramton, and Milgrom (2006) introduced the 
combinatorial clock auction (CCA) as a design to communicate relevant price and 
package information. In that design, bidders would decide which items to include 
in their packages and the system would determine prices using rules similar to the 
SMR auction, in which prices are increased for any individual items included in 
the demanded package by more than one bidder. Once total demands at the posted 
prices were no more than the supply, this “clock stage” of the auction would end. 
Bidders would have one more chance to submit a limited number of additional pack-
age bids that are consistent with the package values expressed during the clock 
stage. The precise notion of “consistent” has gone through several versions over 
time. The main advantage of this design was to guide bidders to packages that fit 
well with those expressed by other bidders.

Given that bidders are unable to bid for all packages, which are the important 
packages on which bids must be received for the auction to perform well? Which 
packages are real bidders likely to identify for bidding? Kagel, Lien, and Milgrom 
(2010, 2014) studied those questions. We characterized sets of “efficiency relevant 
packages” and “core relevant packages” and found that, to generate efficient out-
comes or competitive prices, it was sufficient that bidders bid aggressively on those 
packages, even excluding any bids on other packages. In addition, we found that 
for some  clock-guided designs, bidders in an economics laboratory were guided by 
prices to bid in each round mainly for the packages that appeared to be most profit-
able at the current clock prices.

My study of bidding languages to express bids compactly began in Hatfield and 
Milgrom (2005) and Milgrom (2009). Those two papers offered intuitive ways to 
describe a large class of substitutes values, but these languages do not describe any 
complementarities. Eilat and Milgrom (2011) offers a language to describe simple 
economies of scale and scope that arise from fixed costs while Bichler, Milgrom, 
and Schwarz (2020) adds a capability to express general economies of scale in a 
product category and limited economies of scope across categories.

The third combinatorial issue is how to set prices from a set of combinatorial 
bids. Day and Milgrom (2008, 2013) studied  core-selecting auctions, which are 
auctions that satisfy three conditions:

 (i) The winning bids comprise the feasible set that maximizes the total bid.

 (ii) No bidder pays a price higher than its own bid.

 (iii) The total auction revenue is not less than another set of bidders has offered to 
overturn the allocation.

The Vickrey auction, which eliminates bidders’ incentives to misreport, is 
not a  core-selecting auction, so we characterized the auctions among those 
that are  core-selecting that minimize the total incentive to misreport, which we 
called the  minimum-revenue  core-selecting auctions, which we characterized. A 
 minimum-revenue  core-selecting pricing rule was combined with our CCA com-
munication design to create another one of the most widely used auction rules for 
radio spectrum sales.



1399MILGROM: AUCTION RESEARCH EVOLVING: THEOREMS AND MARKET DESIGNSVOL. 111 NO. 5

Day and Milgrom (2013) also included a conceptual breakthrough, highlighted 
in point (iii). In contrast to earlier papers in mechanism design theory, which had 
treated incentives as a constraint that must always be exactly satisfied, our analysis 
relaxed that constraint in favor of a constraint on total auction revenue. We instead 
treated the incentive to deviate as an objective to be minimized.

Mixing Theory and Computations

Motivated in part by my earlier finding that theoretical concerns like the expo-
sure problem are sometimes exaggerated, my recent work incorporates computa-
tional studies, as well as formal theorems, into the analysis of auction mechanisms. 
Two examples of this approach are discussed below. The first arose from an auction 
design problem for internet display advertising. Events have since overtaken that 
design, i.e., it no longer addresses the most important challenges of that industry, but 
my coauthors in that work deserve credit for breaking ground in combining theory 
and computations. The second example is perhaps the capstone of my career: the 
Broadcast Incentive Auction. Auctionomics’ design recommendations for that auc-
tion were adopted by the Federal Communications Commission for what appears 
to be the most complex resource reallocation problem in history. Working with Ilya 
Segal and Kevin  Leyton-Brown, we devised new theory and software algorithms to 
create a new auction design that was simple and intuitive for bidders and could run 
that  multifaceted process smoothly and successfully.

Adverse Selection in Internet Advertising

My  co-laureate, Robert Wilson, had introduced an auction model that empha-
sized the winner’s curse, which is a form of adverse selection. After Google’s 
 sponsored-search auctions proved that targeted,  intention-based advertising could be 
hugely profitable, internet sites that had been using traditional contracts to sell to tra-
ditional advertisers, who seek to enhance their brands or inform consumers about spe-
cial events, began to introduce auction methods to reach a new category of advertisers. 
These new advertisers look at consumers individually, measuring and predicting some 
aspect of ad performance such as whether consumers click links, fill forms, or buy 
products. Auctioning targeted ads, however, creates a problem of adverse selection for 
brand advertisers, because each ad is shown to just the remaining viewers that no per-
formance advertiser thought was worth paying for, instead of reaching a representative 
mix. The remaining impressions are, on average, much less valuable.

At the time,  second-price auctions were most commonly used to sell such adver-
tising, due to their efficiency and dominant strategy properties. I wondered: is there 
a way to use an auction to sell impressions that protects the contract advertiser from 
adverse selection but still allows an advertiser who is an especially good match for 
some customer to select that customer for targeting? What would such an auction 
look like?

Writing with two of my students in Arnosti, Beck, and Milgrom (2016), we found 
a surprising affirmative answer to the first question using a model that distinguishes 
brand advertisers from performance advertisers. For the brand advertiser whose ad 
would, in the absence of performance advertisers, be the one that is shown to the 
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visitor, the value of that ad impression is   X 0   V , which is assumed to be unknown 
to the brand advertiser (and is the reason the brand advertiser does not engage in 
targeting). For any performance advertiser  n = 1, …, N , the value is   X n   V , which 
that advertiser knows. The common  V  term is a measure of valuable general charac-
teristics, such as the visitor’s income and how engaged she is with that site and how 
responsive she may be to online advertising. The   X n    terms measure the match qual-
ity. For example, a consumer who has recently been reading about and shopping for 
home loans will be particularly valuable to a retail mortgage company like Quicken 
Loans. The key assumption of the model is that the two random variables   X 0    and  V  
and the random vector   X =  ( X 1   ⋯  X N  )    are statistically independent. This means 
that the vector of performance advertiser match qualities  X  is uninformative about 
both the brand advertiser’s value   X 0   V  and the common term  V . In a direct mecha-
nism, the performance advertisers make their reports  XV . Let  B  denote the set of bid 
profiles that result in an award to the brand advertiser. If  XV ∉ B , then the impres-
sion is assigned to some performance advertiser.

Our paper originated a new approach to auction market design that mixes axiom-
atic and computational approaches in a promising recipe. The axioms were these. 
One requires that the mechanism is  strategy-proof for any fixed number of bidders, 
so each bidder’s dominant strategy is to report truthfully:   b n   = V X n   . Deterministic 
mechanisms and anonymity axioms then imply that only the performance advertiser 
that places the highest bid can ever become the winner. Another axiom requires that 
the auction mechanism be  false-name proof, meaning that if there are at least two 
bidders, no bidder can influence the price or allocation by submitting an additional 
low bid under a false name. Next, the allocation rule must be  adverse-selection 
free, which means that the probability that the impression is awarded to the brand 
advertiser is independent of  V  and   X 0   V  which means that  X ∈ B ⇔  (∀ v)  vX ∈ B .

For notational simplicity, let us label the performance bidders in the order of 
their submitted bids, from largest to smallest, so   b 1   >  b 2   > ⋯ . The  false-name 
proof axiom implies that an allocation to the brand advertiser depends only on the 
two highest bids    ( b 1  ,  b 2  )   , and  adverse-selection free then implies that it depends 
only on the ratio of values   X 1  / X 2   = V X 1  /V X 2   =  b 1  / b 2   . The allocation rule 
of a  strategy-proof mechanism is monotonic, so using the preceding there exists 
some  β ≥ 1  such that bidder 1 wins if and only if   b 1   > β b 2   . To be  strategy-proof, 
the auction mechanism must also set the winning bidder’s price equal to it is min-
imum winning threshold  β b 2   . Our main theorem in the axiomatic section summa-
rizes all this as follows: the set of auction mechanisms that satisfy the listed axioms 
forms a parameter class indexed by  β ≥ 1 , as just described. By varying  β , the 
probability that any impression is assigned to the brand advertiser can be anything 
between 0 and 1. Setting  β = 1  recovers the Vickrey auction among performance 
bidders only, excluding the brand advertiser.

For the computational part of our analysis, we need additional assumptions. We 
assume that   X 1  , …,   X N    are independent and identically distributed according to 
a power law distribution: for any  x ≥ 1 ,  Pr { X n   > x}  =  x   −ρ  , where  ρ > 0  is a 
parameter of the distribution. We set   X 0    equal to a constant, allow  V  to be drawn 
from any distribution  G  with finite expectation, and vary  β  to find the mechanism in 
our class that maximizes efficiency. To measure efficiency, we divide the expected 
value under our mechanism to the maximum expected value of any allocation 
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rule and find that the  worst-case performance of this mechanism is surprisingly 
good:   min ρ, X 0  ,G,N    max β   EfficiencyRatio = 0.948 .

Intuitively, the high efficiency ratio means that the new mechanism assigns the 
impression to performance advertisers whenever the gains from doing so are sub-
stantial. This is a characteristic of  fat-tailed distributions like the power law, for 
which a large fraction of the total gain from assigning impressions efficiently to 
performance advertisers is realized when   X 1    is high. For  fat-tailed distributions, 
when   X 1    is high,   X 1  / X 2    tends to be high as well, so the new auctions tend to capture 
much of the gains.

The Broadcast Incentive Auction.—After Apple’s introduction of the iPhone 
in 2007, consumer demand for wireless data exploded. Soon after that, the FCC 
began to explore ways to phase out older, less valuable uses of the spectrum to make 
use for more valuable ones. One of the first targets was the spectrum allocated to 
 over-the-air television broadcast, which had declined in relative value as consumers 
increasingly used alternatives like cable, satellite, and the internet to watch their 
favorite television shows.

The TV spectrum reallocation problem was made complicated beyond any prec-
edent by several factors.

First, the effective engineering of the system requires that the same channels be 
assigned to television broadcasting across the United States, and the engineering 
works best if the channels are also the same in Canada and Mexico, so that there 
is no problem of broadcast interference near international borders. Clearing chan-
nel 42 in Chicago is hardly worthwhile unless one can clear the same channel in 
New York and Los Angeles. Moreover, if channel 42 is used for broadcast television, 
then channels 41 and 43 cannot be used effectively for mobile data. To create max-
imum value, the reallocation and reassignment of stations to new channels to free a 
good set of channels for mobile data needed to be well coordinated across the whole 
country and even internationally.

Second, the amount of spectrum to be cleared was not known in advance. 
Some TV station owners would be willing to sell their broadcast rights for a 
suitable price and mobile telephone companies would pay something to buy, 
but how much could be traded and at what cost? FCC staffers Evan Kwerel and 
John Williams suggested that a market process would be the best way to answer  
those questions.

Third, there were about 2,400 TV stations, each with different conditions of sup-
ply and demand that may require setting its own distinct market price. On the sup-
ply side, TV station values depend mostly on the viewers they reach, and there are 
huge variations among stations in the numbers and incomes of their viewers. For 
example, there are many times the number of viewers of a full power station in New 
York than of stations in Tampa or Boise or Stockton, and average incomes vary in 
those cities, too. On the demand side, because every station location has a different 
coverage area, it also has a different role in avoiding interference with other TV 
operations, giving it a distinct value to the FCC.

Fourth, determining whether a set of channels can be cleared using a particular 
set of stations is extremely challenging. There is a branch of computer science called 
“complexity theory,” which classifies the difficulty of computational problems. To 
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evaluate the difficulty of the present problem, it is helpful to think of each TV station 
as a node in a graph. Let us say that two TV stations are connected by an edge in the 
graph if those stations are too close to share the same channel. More precisely, they 
are connected by an edge if assigning the same channel to both stations would cause 
more than 0.5 percent of either of their viewing audiences to suffer signal impair-
ment from the resulting interference. With this framing, the question of whether it is 
possible to assign a channel from a given set of channels so that no two connected 
stations share a channel is an instance of the famous  graph-coloring problem: is it 
possible to assign a color from a certain set of colors to each node so that no two 
connected nodes are the same color? This graph coloring problem is known to be 
 NP-complete, which means that for any known algorithm, the  worst-case solution 
time grows exponentially in the problem size. The North American interference 
graph, with about 130,000 edges, is a large problem, and numbers like   1.1   130,000   
are almost unimaginably large. That difficulty is just to check whether purchasing a 
certain set of stations makes clearing a set of channels feasible. To find the solution 
that minimizes total cost is, in practice, even harder. Any practical market algorithm 
would be unable to make use of optimization, so traditional combinatorial auction 
designs could not be used.

The auction design team’s solutions to the full set of auction design challenges 
are spelled out in Milgrom and Segal (2020) and  Leyton-Brown, Milgrom, and 
Segal (2017), but I will focus here just on the problem of designing a “reverse” 
auction to purchase TV broadcast rights. The first step in creating that design was 
to introduce a vast new collection of descending clock auction designs, which are 
formalized as follows.

There are  N  bidders and a finite set    of possible prices. In each round  t  of the 
auction, each bidder  n  is presented with a price   p  n  t   ∈  . If the price is different from 
that of the preceding round ( t ≥ 2  and    p  n  t   ≠  p  n  t−1  )    , then the bidder may reject the 
price and exit from the auction, making no further  accept-reject decisions. Let   h t    be 
a list of the reject decisions made at round  t = 1, 2, … . The history of such reject 
decisions through round  t  is denoted by    h   t  =  (   h   t−1 ,  h t   )     where   h   0  = ∅ . Let    be 
the set of possible histories.

A descending clock auction is described by any function  p :  →     N   satisfy-
ing   p ( h   t )  ≤ p (   h   t−1  )     for every history   h   t  ∈  . The interpretation is that  p ( h   t−1 )   is 
the vector of prices offered to the bidders in round  t  and that the auction ends after 
round  T  if   p ( h   T )  = p (   h   T−1  )    . At that time, winners and losers are determined. Any 
bidder  n  who has ever rejected a price is a loser, keeping her station and receiving no 
payment. Any remaining bidder  n  who has never rejected a price is a winner, selling 
her station at price    p n   (   h   T    )    . Any two functions  p,  p ˆ    describe different auctions if they 
have different ending rounds  T ≠  T ˆ    or specify different prices    p n   ( h   t )  ≠   p ˆ   n   (    h   t  )     for 
some station  n  that has not exited at some for   t ≤ min (  T,  T ˆ   )    .

Descending clock auctions all share some useful properties:

 (i) Every descending clock auction is  strategy-proof and furthermore, also 
obviously strategy proof, a concept defined by my former doctoral student 
Shengwu Li (2017). It is “obvious” in his sense that a bidder should accept 
prices greater than her value   v n    and reject all lower offers. This is an “obvious” 
choice in every situation. For no matter what price   p n   ( h   t )   is currently offered, 
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if she follows the recommended strategy, her payoff will be at least   v n   . If she 
rejects some price   p n   ( h   t )  ≥  v n    or accepts some price   p n   ( h   t )  ≤  v n   , then her 
payoff will be at most   v n   .

 (ii) Every descending clock auction is weakly group  strategy-proof. This means 
that there is no joint deviation by any coalition of bidders that makes every 
member strictly better off. To see why, consider the first member to deviate. 
Because the auction is obviously  strategy-proof, that bidder cannot strictly 
benefit from the deviation.

 (iii) Every clock auction  p  accommodates budget constraints, meaning that there 
is another descending clock auction   p ˆ    that leads to total prices of at most any 
given budget  B ≥ 0  and leads to the same outcome whenever the original 
auction would satisfy the budget constraint. If the original clock auction is  p  
with termination round  T , then such an alternative auction sets    p ˆ   ( h   t )  = p (   h   t  )      
for any  t < T ,    p ˆ   ( h   T )  = p (   h   T  )     if the budget constraint is satisfied at  T ,  
and, for example,   p ˆ   ( h   T   )  = 0  of the budget constraint is not satisfied at  T .

 (iv) Every clock auction  p  accommodates computation time limits, meaning that 
there exists another descending clock auction   p ˆ    such that    p ˆ   n   ( h   t )  =  p n   ( h   t )   
when that can be computed in the allowed time and such that if  p  always 
leads to feasible solutions after every history of feasible solutions, then   p ˆ    
does so as well. This works by the construction that, when computation time 
expires, set     p ˆ   n   ( h   t )  =  p n   (   h   t−1  )    .

 (v) Every clock auction  p  preserves winner privacy, meaning that if bidder  n  
with value   v n    wins at some price of    p n   (   h   T  )     when other bidders’ values are   v −n   , 
then that bidder still accepts all offers and wins at precisely the same price 
when its value is    v ˆ   n   <  v n   .

In addition to those properties, we showed that the class of clock auctions includes 
some that approximately minimize the auctioneer’s procurement costs and approxi-
mately minimize the value of the stations removed from broadcasting, subject to the 
constraint that sufficiently many stations must be cleared to make the procurement 
possible.

The computational aspect of this analysis was twofold. The most impressive 
part was the development of customized algorithms for the FCC problem by Kevin 
 Leyton-Brown and his students at the University of British Columbia. Their algo-
rithms for the checking problem described above ran about 1,000 times faster than 
the best existing commercial algorithms.

In  Leyton-Brown et al. (2020), we studied the performance of the FCC reverse 
auction design by using simulations, with bidder values inferred from the bids in 
the actual incentive auction. The actual design included some controversial features 
intended to improve efficiency and reduce costs, in the hopes of clearing more spec-
trum and raising more net revenue for the Treasury. We evaluated performance cri-
teria including the number of channels cleared, costs of procurement, efficiency of 
the final allocation, and computation time, and considered how various aspects of 
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the design affected these measures. The summary, which readers should verify by 
studying our paper, is that the actual FCC design led to high levels of efficiency and 
expected payments to broadcasters that are much lower than what the FCC would 
expect using a Vickrey auction.

Conclusion

Auction theory has changed substantially since I made my first studies in what 
were still its early days. Although the “unrealistic” models of those times have 
proved their worth in guiding practical auction designs, some of that guidance was 
off point. In my own work, this showed up in the traditional analysis of the exposure 
problem. Despite the theoretical  worst-case conclusion that exposure problems are 
intractable, we found that they could sometimes be quite manageable in practice.

For the future, simulations and computational methods are likely to be increas-
ingly important. Yet, it still takes theory to understand problems and the scope of pro-
posed solutions. The time has come for old methods and new to work hand in hand.
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